Написал блочное перемножение для больших матриц, которое не требует много RAM, единственное непонятно как его оптимизировать под конкретный компьютер и будет ли это работать лучше чем тот же своп системы(но во всяком случае более контролируемо и прозрачно), в питоне например используя numpy.memmap были проблемы(и вообще получается это более ограниченнывй подход завязанный на систему), а как работает матлаб со свопом надо еще протестировать.
import numpy as np
import tables
import time
n_row=1000
n_col=1000
n_batch=100
def test_hdf5_disk():
rows = n_row
cols = n_col
batches = n_batch
#settings for all hdf5 files
atom = tables.Float32Atom() #if store uint8 less memory?
filters = tables.Filters(complevel=9, complib='blosc') # tune parameters
Nchunk = 4*1024 # ?
chunkshape = (Nchunk, Nchunk)
chunk_multiple = 1
block_size = chunk_multiple * Nchunk
fileName_A = 'carray_A.h5'
shape_A = (n_row*n_batch, n_col) # predefined size
h5f_A = tables.open_file(fileName_A, 'w')
A = h5f_A.create_carray(h5f_A.root, 'CArray', atom, shape_A, chunkshape=chunkshape, filters=filters)
for i in range(batches):
data = np.random.rand(n_row, n_col)
A[i*n_row:(i+1)*n_row]= data[:]
rows = n_col
cols = n_row
batches = n_batch
fileName_B = 'carray_B.h5'
shape_B = (rows, cols*batches) # predefined size
h5f_B = tables.open_file(fileName_B, 'w')
B = h5f_B.create_carray(h5f_B.root, 'CArray', atom, shape_B, chunkshape=chunkshape, filters=filters)
sz= rows/batches
for i in range(batches):
data = np.random.rand(sz, cols*batches)
B[i*sz:(i+1)*sz]= data[:]
fileName_C = 'CArray_C.h5'
shape = (A.shape[0], B.shape[1])
h5f_C = tables.open_file(fileName_C, 'w')
C = h5f_C.create_carray(h5f_C.root, 'CArray', atom, shape, chunkshape=chunkshape, filters=filters)
sz= block_size
t0= time.time()
for i in range(0, A.shape[0], sz):
for j in range(0, B.shape[1], sz):
for k in range(0, A.shape[1], sz):
C[i:i+sz,j:j+sz] += np.dot(A[i:i+sz,k:k+sz],B[k:k+sz,j:j+sz])
print (time.time()-t0)
h5f_A.close()
h5f_B.close()
h5f_C.close()
вот тут еще интересное
http://www.tau.ac.il/~stoledo/Bib/Pubs/oocsurvey.pdf