Примеры программ
import pandas as pd import xgboost as xgb from sklearn.metrics import confusion_matrix, mean_squared_error from sklearn.metrics import mean_absolute_error,mean_squared_error,median_absolute_error df = pd.read_csv('zab_work2.csv',";",header=None) X_train = df.drop(17,axis=1) Y_train = df[17] T_train_xgb = xgb.DMatrix(X_train, Y_train) params = {"objective": "reg:linear", "booster":"gblinear"} gbm = xgb.train(dtrain=T_train_xgb,params=params) test_data = pd.read_csv('new_work2.csv',";",header=None) print(test_data) X_test = test_data.drop(17,axis=1) Y_test = test_data[17] Y_pred = gbm.predict(xgb.DMatrix(X_test)) test_erorr = mean_squared_error(Y_test,Y_pred); print("Accuracy: %.2f%%" % (test_erorr * 100.0)) accuracy = mean_absolute_error(Y_test,Y_pred) print("Accuracy: %.2f%%" % (accuracy * 100.0)) accuracy2 = median_absolute_error(Y_test, Y_pred) print("Accuracy: %.2f%%" % (accuracy2 * 100.0))
import numpy import sklearn import xgboost as xgb from sklearn.metrics import confusion_matrix, mean_squared_error dataset = numpy.genfromtxt('zab_work2.csv', delimiter=";") dataset2 = numpy.genfromtxt('new_work2.csv', delimiter=";") # split data into X and y X = dataset[:,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]] Y = dataset[:,[17]] T_train_xgb = xgb.DMatrix(X, Y) x_2 = dataset2[:,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]] y_2 = dataset2[:,[17]] params = {"objective": "reg:linear", "booster":"gblinear"} gbm = xgb.train(dtrain=T_train_xgb,params=params) Y_pred = gbm.predict(xgb.DMatrix(x_2)) test_erorr = mean_squared_error(y_2,Y_pred); print("Accuracy: %.2f%%" % (test_erorr * 100.0)) accuracy = mean_absolute_error(y_2,Y_pred) print("Accuracy: %.2f%%" % (accuracy * 100.0)) accuracy2 = median_absolute_error(y_2,Y_pred) print("Accuracy: %.2f%%" % (accuracy2 * 100.0))
Accuracy: 2136783951368866816.00%
Accuracy: 1569996353.79%
Accuracy: 384559.79%
Во-втором:
Accuracy: 14028999965613744.00%
Accuracy: 1159296761.36%
Accuracy: 1160740900.00%
Бред же, а не результаты. Мб я где-то что-то не правильно считаю?
Файлы очень большие приложить не могу, но структура одинаковая
18 столбцов. По 1-17 - признаков, 18-ый - результат.